Linear Algebra I

Mid Term Examination

Instructions: All questions carry ten marks. Vector spaces are assumed to be finite dimensional.

1. Give examples of symmetric matrices A and B such that $A B \neq B A$.
2. Let A be a square matrix such that the system of equations $A X=B$ has a unique solution for some vector B. Then show that for every vector C, there exists a unique solution for the system $A X=C$.
3. Show that the set of Trace zero real matrices is a subspace of the vector space of all real matrices of order n. (You may assume that the set of matrices of order n is a vector space over real numbers under usual addition and scalar multiplication.)
4. Prove or disprove: Any set S of a vector space V over a field F contains a linearly independent subset $T \subset S$ such that $\operatorname{Span}(T)=\operatorname{Span}(S)$.
5. Prove that given a maximal linearly independent subset S of V, any vector can be written in a unique way (up to a reordering elements of S) as a linear combination of elements of S.
6. Let W be a subspace of \mathbb{R}^{n}. Prove that there exists a subspace W_{1} such that
(a) $W \cap W_{1}=0$, and
(b) every vector v of \mathbb{R}^{n} can be written uniquely as $v=w+w_{1}$ with $w \in W$ and $\mathrm{w}_{1} \in W_{1}$.
