Linear Algebra I

Mid Term Examination

Instructions: All questions carry ten marks. Vector spaces are assumed to be finite dimensional.

- 1. Give examples of symmetric matrices A and B such that $AB \neq BA$.
- 2. Let A be a square matrix such that the system of equations AX = B has a unique solution for some vector B. Then show that for every vector C, there exists a unique solution for the system AX = C.
- 3. Show that the set of Trace zero real matrices is a subspace of the vector space of all real matrices of order n. (You may assume that the set of matrices of order n is a vector space over real numbers under usual addition and scalar multiplication.)
- 4. Prove or disprove: Any set S of a vector space V over a field F contains a linearly independent subset $T \subset S$ such that Span(T) = Span(S).
- 5. Prove that given a maximal linearly independent subset S of V, any vector can be written in a unique way (up to a reordering elements of S) as a linear combination of elements of S.
- 6. Let W be a subspace of \mathbb{R}^n . Prove that there exists a subspace W_1 such that
 - (a) $W \cap W_1 = 0$, and
 - (b) every vector v of \mathbb{R}^n can be written uniquely as $v = w + w_1$ with $w \in W$ and $w_1 \in W_1$.